Efficient Techniques for Improved Data Classification and POS Tagging by Monitoring Extraction, Pruning and Updating of Unknown Foreign Words

نویسندگان

  • Irfan Ajmal Khan
  • Jung-hyun Woo
  • Yoon-Ju Lee
  • Hye-Jin Jo
  • Jin-Tak Choi
چکیده

This paper presents an efficient text mining method focusing on extraction and updating of unknown words (unknown foreign words) to improve data classification and POS tags. Our proposed method used simple but efficient techniques, first it converts the data into structured form, using data preprocessing techniques. In this phase data passes through different stages, such as, cleaning, integration and selection of important data, and then it gets organized into databases for further analysis and processing. These database(s) consists of different kinds of dictionaries, our system heavily based on dictionaries. Our proposed methods for discovering and updating foreign unknown word, first discovers the foreign word using morphological analysis with the help of automatically and manually crated dictionaries, then suffix trimming and word segmentation, next our algorithm checks for its different written pattern using dictionaries according to its spelling and synonym word in native language (Korean) and also, updates the POS tags.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

برچسب‌گذاری ادات سخن زبان فارسی با استفاده از مدل شبکۀ فازی

Part of speech tagging (POS tagging) is an ongoing research in natural language processing (NLP) applications. The process of classifying words into their parts of speech and labeling them accordingly is known as part-of-speech tagging, POS-tagging, or simply tagging. Parts of speech are also known as word classes or lexical categories. The purpose of POS tagging is determining the grammatical ...

متن کامل

سیستم برچسب گذاری اجزای واژگانی کلام در زبان فارسی

Abstract: Part-Of-Speech (POS) tagging is essential work for many models and methods in other areas in natural language processing such as machine translation, spell checker, text-to-speech, automatic speech recognition, etc. So far, high accurate POS taggers have been created in many languages. In this paper, we focus on POS tagging in the Persian language. Because of problems in Persian POS t...

متن کامل

Arabic Part of speech Tagging using k-Nearest Neighbour and Naive Bayes Classifiers Combination

Part Of Speech (POS) tagging forms the important preprocessing step in many of the natural language processing applications such as text summarization, question answering and information retrieval system. It is the process of classifying every word in a given context to its appropriate part of speech. Different POS tagging techniques in the literature have been developed and experimented. Curre...

متن کامل

Morphological Richness Offsets Resource Demand - Experiences in Constructing a POS Tagger for Hindi

In this paper we report our work on building a POS tagger for a morphologically rich languageHindi. The theme of the research is to vindicate the stand thatif morphology is strong and harnessable, then lack of training corpora is not debilitating. We establish a methodology of POS tagging which the resource disadvantaged (lacking annotated corpora) languages can make use of. The methodology mak...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015